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A method of deriving the solution of the bending problem for an infinite 

plate on a linearly deformable foundation of general type is presented 
in publications of Korenev fl 1. The solution of the bending problem for 
a semi-infinite plate on elastic foundations of some special character- 
istics was obtained. on the basis of the theory of integral equations of 

the Wiener-Hopf type C 5 1 , in [ 2,~ 1 , and furthermore in [ 4 I. 

A general method of deriving the solution of the bending problem for 

a semi-infinite plate on a linearly deformable foundation of general 
type, with additional loading taken into account. is given below. A de- 

tailed presentation is worked out for the case of a semi-infinite beam 

on the elastic half-plane. A well-known approximate solution of this 
problem has been given by Gorbunov-Posadov [ 6 1 ; he himself concedes, 

however, that the approximate method just mentioned is less accurate 
than his method of analysing beams of finite length. The reader will 
find below the results of computations which show the deviations of 
Gorbunov-Posadov’s solution from those obtained in the present publica- 
tion. 

1. Assume a thin semi-infinite plate (0 < x < M, - DD < y < 8) of 
rigidity D to rest on a linearly deformable foundation for which 

In this formula uO(r) denotes the settling of a point on the surface 
of the foundation at the distance r = 4 (x2 + y*) from the origin of the 
coordinates, where a unit force is applied. ‘Ihe function f,(t) can be 
arbitrary; only its behavior at infinity is supposed to be known. 
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Bending of a semi-infinite plate 503 

fo (q = w-l* iI + 0 (I)11 P>-5, Cl = const (1.2) 

Equations (1.1) and (1.2) are valid for almost all suggested models 
of linearly deformable foundations. We note that 

/o(t) = (1 - %Q) (n&)-1= l/s 8 

for the case of a homogeneous half-space. 

Furthermore, we assume that the semi-infinite plate is acted 
the loading q+(x, y), and the free surface of the foundation by 
tional loading q-(x, y), where 

cr’(G Y) = 0, (x<O), q- (5, Y) = 0, (x > 0) 

upon by 
the addi- 

(1.3) 

In this case the problem of determining the contact stress p(x, y) 

and the deflections w(x, y) of the plate is equivalent to that of SO~V- 
ing the system 

1 v/’ 
wo ( (x- E)” i- (Y - r1)2) [P(EV rl) + q- (L 11)l G drl = w(x, Y) 

(--ocJ<%Y<=J) 

wv2wG 9) = q+c% Y)- Pb Y) (O<X<~, --x<Y<O) 

followed by fulfilling the boundary conditions for the free edge of the 
plate 

where v is Poisson’s ratio for the plate material. 

Passing from the functions ID(X, y), p(x, y), q+(x, y) to their 
Fourier transforms [ 7 1 q(x), px (xl, qA+(z), we can reduce the above 
system to 

00 

e3t 
s k( Ix-- ~I)[PA&) + qh-(E)lG = a(4 (--=<r<=) 

;;..$ - h2)2 

(1.4) 

m(2) = qA+(l)- p,.(z) (0 <cc< c=) 

'Ihe corresponding form of the boundary conditions for the free edge 
is then 

W>,(‘) (+ 0) - h%U?h (+ 0) == 0, Wxc3) (-1 0) --- (2 --- V) h2W),(‘) (-I- 0) := 0 (1.5) 



504 G. Ia. Popov 

We use here the notation 

/c(a) = ;;?e 1 w,, ( vm) eeihTdr 
-00 

‘Ihe Fourier transform required for this function is 

K(U) = -$ two(l/a2 -+r2)exp(ihz+ iau)dadr 

(1.6) 

With the aid of procedures given on p. 80 of [ 7 1 , the expression for 
K(u) can be transformed into 

rw,, (r) J, (r vu2 + h2) dr 
0 

On the basis of (1.1) and with the aid of the formula used for the 
Hankel transforms [ 7 I , we find 

(1.7) 

Assuming h > 0, we represent the general solution, equal to zero at 
x + =, of the differential equation of the system (1.4) in the form 

co 

WA (z) = (a, -I- a,hz) e---)b” + $ \ g ( I x - s I) [n+ (s)- PA (41 ds (z >, 0) (1.8) 
---co 

It can be shown that in this presentation 

g(t) = $ (1 _k At) e--At = & 7 e*:iufdu 
(u” + I%)2 

-03 

(l-9) 

at 

TIhe symbols aa and al denote arbitrary real constants. 

Equating (1.7) to the first equation of the system (1.41, we arrive 
the integral equation 

co 

5 
Z( / z -- s I) ph (s) ds = f (5) (r>O) (1.10) 

0 

with the kernel 

1 (t) = k (t) + c3g (t), c3 = (neD)-’ (1.11) 

and with a right-hand member which can be transformed, with the aid of 
the inversion theorem [7 1 and by virtue of (1.3), into 
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f (2) = (a, + a&s) e-ax +&f 
__ [ 

0+(--t) _ 2Q- (- 5) f m 
u c + J.T 30 vm 1 eirx d5 

--t 
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The functions Q?u> denote here the Fourier transforms of the func- 
tions q**(x). 

To solve the obtained integral equation of the Wiener-Hopf type of 
the first kind, we use the procedure which we have employed in [ 8,9 1 . 
First we solve the equation 

co 

s 
1 (I 2 - s 1) xr (s) ds = eicx (r > 0, Im6ZO) 

0 

If, in the case under consideration, we can find q(z), 
solution of Equation (1.10) can be obtained by the formula 

(1.12) 

then the 

axl, (4 
Pa (5) = a0 [Xc (Z)lQ=ih - ib -q-- 

[ I -t 
+ih 

+ g_ [$+;-& - 2Q- $----&~] xc (x) d5 (1.13) 

The solution of Equation (1.12) is to be derived from the formula 

(1.14) 

established and proved for integral equations of analogous type, but of 
the second kind 15 I, The function h(w) must be regular and differ from 
zero in the upper half of the plane (excluding the point -), and satisfy 
the equation 

[L(u) = 3 l(z)eiXU&]+= $A(u)$~(--u) (--w<u<oo) (1.15) 
--co 

Furthermore, its behavior at infinity must be restricted by the con- 
dition 

$h (w) = 0 (w”) (P<i. w-m) (1.16) 

b the contour y is meant the straight line (- m, -) parallel to the 
real axis of sufficiently small distance from the latter, more accurately 
stated, at such a distance that all singular points of the function 
$A<PP) be situated below this straight line. It can be shown by imediate 
substitution of (1.14) into Equation (1.101, with (1.151, (1.16) taken 
into account, that (1.10) is actually satisfied [8,9 I. 
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In this way the solution of Equation (1.12) is reduced to the problem 
of finding the function $k'o), or, using the terminology of [5 3, to the 
problem of factorizing the function L(u), which in the case under con- 
sideration is, according to (l.ll), (1.9) and (1.7), of the form 

L(u) = 
2f (I/G + h” C3 

8 r/u” + h2 
*-- -i- ($ + h”)2 (1.17) 

It is possible, as shown in the paper just mentioned, to factorize any 
function'H(u), continuous in the interval (- m, OO), differing from zero 
and equal to unity when u + + m. If, moreover, the function N(u) is even, 
its factorization K-'(u) = K(u)K(-U) is unique and ascertained by the 
function 

(1.18) 

With this in view, we reduce the function 
factorized, first to the following form: 

(1.17), which is to be 

Taking (1.2) into account, we now see that the expression within 
braces satisfies the conditions necessary for its factorization, in 
accordance with Formula (1.18). 'Ihe factor before the braces is factor- 
ized elementarily. In accordance with the above statements we shall have 

It is shown in [2 I that in the case of an elastic homogeneous half- 
space [f,(t) = @/Z = cI, ff = 0 ] the formulas just obtained become 

-1-a. (70) = i xj (211; h), 
_._- 

2&Q (w) = J’hr=iW Xh (w), Hejf/h-iw>O (1.21) 
j=l 
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u1 = CE, a.2 = CE, 113=-c 7 
fj = eixls (1.23) 

2. Expression (1.19) obtained for $_kw> is to be substituted into 

(1.14), which gives xc(n), and this latter function is to be substituted 

into (1.13). As a result of the further obvious transformations we obtain 

the formula 

pi (?&.) = $ ’ I[ ip, tw) _, (W+ ihY 
- I(- w)] $a (w) e--iwx dw (2-l) 

where 

I(z) = & 1 [(;+&$ - 2Q- (-- 5) f (1/p + h2) - 
CVJ v/5"+ I.2 1 9h (u) 

II_du (2.2) 

-CC 

P,,(W) = A0 _t (W + iii) 11, (2.3) 

c,A, = a,ih$,,(ih), c3AI = ao$h (ih) - u+h$k (ix) (2.4) 

Here, and everywhere in the following, a prime denotes a derivative. 

Substitution of Expression (2.1) for p*(x) into Formula (1.8) leads, 

after simple computations, to 

c3 

DwA (2) = D (a,, + a,Xs) e-lx + 1 
P, (w) gh (w) e--iwx 

2nc s (w + ih)2 (UJS + Aa)2 dw t 

c3 

+%i s 

Q+ (- w) + I(- 4 +A d+ dw 
(u9 + k2)a (z > 0) 

Y 
(2.Sj 

Another expression can be obtained for UJ~X>, if (2.1) is substituted 

not into (1.8) but into the first equation of the system (1.4). The 

formula obtained in this manner proves to be useful in some cases. 

Taking (2.31, (2.4) into account and using the methods of the theory 

of residues, we can find from (2.5) an expression for WA(X) and its de- 

rivatives UJ~(~) for x -) + 0; computations lead to 

Dwh(‘Q (+ 0) = a, [cs 
(2n - 3) qA2 (ih) + 2ih$,’ (A) 9~ (ih) 

16h4-” 
+ (- w] i 

+ a, [- n (- A)“D + cs 
(n - 2) qk2(ih) -(an - 3) ih$, (ih) Qi (ih) + 2h%[+‘h’(ik)]2 

1 6h4-* 
___ i- 

I 

c3 Q+(--)+Z(-W)T~W 
-hi s (w” + I?)2 

(- iw)ndu~, (n = 0, 1, 2, 3) VW 
Y 
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We substitute now the expressions for W&(X) and its derivatives at 
x = + 0 into the transformed boundary conditions (1.5). As a result we 
obtain two equations from which we find the arbitrary constants a0 and 

=1, and this completes the determination of 
p*(x). 

the functions W*(X) and 

The derivation of the final formulas is, however, not possible by 
means of iannediate reduction of the Fourier transform of the functions 
W(X, y) and p(xj y) in accordance with the formula [7 1 

since WA(Z) and pi have been obtained on the assumption that X > 0. 
Ibis condition will be complied with only in the case when the functions 
w(x, y) and p(x, y) will be simultaneously even or odd with respect to 
y. Consequently, in the general case we will have to proceed as follows: 
to resolve the given loadings q+(x, y) and Q-(X, y) into components sym- 
metrical and skew-synvaetrical with respect to the x-axis, i.e. 

q+ (% y> = 41+ (? Y) + q2+ (x3 !I)! q- (4 Y) = Ql- @? Y) i- (Ia+ (G Y) 

to find w(x, y) and'p(r, y) for even components qr', ql- and for odd ones 

92+' 42 f and then to add the results. 

It so happens that the functions PA(X) and WA(Z) which we have derived 
here are of interest by themselves aswell. The reason is that their 
limiting expressions at h -B 0 will represent the solution of the corre- 
sponding plane problem, i.e. of the problem of a beam-type plate in bend- 
ing on a linearly deformable foundation. 'lhis follows from the condition 
that, if the plate is acted upon by the loading q%, y) = q’+(x) cos hy, 
and the free surface of the foundation by the additional loading q-(x, y)= 

47x1 cos hy, the contact stress and the deflections of the plate will be 

p (2% y) = px (4 cos Q, w (2, y) = WA (2:) cos ?qj 

Thus, denoting by M(x), Q(z), p(x) the bending moment, the shear 
force and the contact stress, respectively, of the beam-type plate, we 
verify without difficulty the validity of the formulas 

M (2) = - lim Dwh2 (x), Q (5) = - lim Dwh3 (x), 
x-to E.-N 

p(z) = I;lYP” (5) (2.7) 

Carrying out these passages to the limits here is by no means a simple 
,operation, however, since according to (2.6) the knowledge of the asymp- 
totic representation of the functions $A( iA) and $i( ih) at X -) 0 will 
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be necessary for that operation, which in turn involves a very detailed 

analysis of the properties of the function (1.19). 

In view of this situation the passage to the limit could be achieved 
only for the case of the elastic homogeneous half-space. It was found to 
be more convenient to start not from Formula (2.5) but from the expres- 
sion for zukzx>, which can be obtained, as already indicated, by substitu- 
tion of (2.1) into the first equation (1.4). We shall give here this 
formula. In doing so we restrict ourselves to the case that there is no 
additional loading [ q-(x, y) = 0 I and that the semi-infinite plate is 

acted upon at the point with the abscissa x = b by a concentrated force. 
‘Ihen, instead of (2.2), we shall have 

P-8) 

Substitution of (2. l), with (2.8) taken into account, into the first 
equation of the system (1.4) gives, as shown in [ 2 1 , as a result of 
transformations indicated there, the desired formula 

M P, (- its) (cs -j- h) (- cs)ne-cxs ds 
DZU~W (5) = - $\ 

>$ _[c6+( c*s2 - hys] x, (its) -I- 
(2.3 

where* 
rj = 

(- l)j ai 

iC1/3(aj +C) ajJ 
(i = 1,2), Uj = lrUj2 - A29 (2.10) 

lITI vUj2 - h2 > 0 (i = 1,2,3) 

By varying the path of integration (a procedure described in greater 
detail in [ 2 ] and 19 1 ) into a loop which embraces the ray (- iA, - im), 

l The third and the fourth terms of the right-hand side of Equation 

(2.9) for 3 (“)(x) in [ 2 I contain typographical errors. They are 
given correctly in the present paper. 
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Formulas (2.1) and (2.8) can be transformed into 

PA(X) = ic” 9” P, (- its) (czsz - h2)y2 (cs + l,)z 

\ n I#,, (its) [c6 + (cpsz - AZ)31 
e--cxs ds + 

i. 
(2.11) 

’ P, (- a$ ajari 

+ c”2 I# (ct.) (ih - Lxj) 
~ __ e’YX + $ 

w I, (its; A) (cV - X2)‘iz e-cxS 

j=l ’ 3 
s h ?/lk (its) [C& + (c? - h2)3] ds -+ 

z: I, (ai; h) aj4 . 
+- ic3 

c4 m rjezaix + 2;; 
s 

ei(.x- f,)u du 

_ 
9x (ai) _-03 c3 + (cw+ hp 

(&‘L _ h2j312 e--bcs ds 

c2s2 - l.2)a] (2 + its) 

3. To analyse a semi-infinite beam (beam-type plate) resting on the 
elastic half-plane (of half-space) and subjected to a concentrated force 
(loading uniformly concentrated along the infinite line r = b) at dis- 
tance n = b from the end, we pass to the limit X + 0 in Formulas (2.9) 
to (2.12) in accordance with (2.7). Let us start with function xi(w; X), 
defined by Formula (1.22). Considering that 

w=ihcosz=ihsin($-r), t = + _ sin-’ w 
x 

COST = $, ai Gj = sin-’ x. , 
iuj 

cos 9 = - -iT ’ +<Re(sin-‘z)<+ 

we may write 

where 

a*++ sin-’ 7 f sin-1 2 

Using, furthermore, the formulas (see pp. 113 and 157 

2 _I- iy 
sin-’ h Z?Z sin-1 

h 
$fiArchq 

(3.1) 

(3.2) 

of [ 10 I) 

Arch T = In (r -I- s) - In h - 0 (X2), h --p 0 

r = 1/(x + h)2 + Y2, s zzx 1/(;-zqqx Y>O 

we find without difficulty 
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xf iy lim arc sim h = arc sin Vz& & i (In 2V/s2+y2 + i 00 (3.3) 

We agree in the following to consider a negative (positive) real 
number to be the limit of a complex number with negative (positive) 
imaginary part. Computations show that reversal of this stipulation does 

not affect the final formulas. Starting from this consideration and using 
Formulas (3.2), (3.3) and (1.231, we find that 

r+ o,-tn/6--iln(s/c), 

zj-a2-+~/6-iioo, 

z+o,4--n//+iioo, 

z-~a,-+-n/6-iioo. 

r-~2-~-~/6-iln(s/c) (3.4) 
r-6a+fi/2-iln(s/c) 

eyr +cl+ n/6- i ln s/c, for example, we mean here 

lim(r-i_a,)=%-iln$-$<,Im(lnz)<$ 
h-t0 

We now find easily 

x1 (its) = :$x1 (its; h) - JfC+ exp [I (s)] (3.5) 

where 

Furthermore, we have on the basis of Cauchy’s theorem for analytic 
functions 

To find the latter integral it was necessary to use a known formula 
given on p. 169 of [ 11 I 1 the handbook [ i2 1 ) p. 171, gives this formula 
with a typographical error. Taking (3.5) to (3.7) and (1.23) into account, 
we obtain instead of (3.5) 

x1 (ics) = I/ 1 
Analogously we obtain, with due attention to (2.10) 
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Consequently, according to (1.21) 

x, (its) = Fz xx (its) =z x (s) = r--- sI’z 
1 sz+I/&+1 

oxp[- ‘: + i hj(s)] (3.8) 

j= 1 

where 

In accordance with (1.21) and (2.10) we have 

i,Ly *a @cs) = I/csXo (its) = 15 x (s) 

lim Qh (a,) = C/l;ewin’12 X0 (ce), 
A+0 

pif *), (a,) = jf/cei”‘12X, (-- c;e‘ (3.10) 

Noting that 

X,(E) = X,[icexp(-in/6)1, x, (- csj = x, [ic exp CT>] 

we substitute into Formula (3.81, instead of s, first eqinf6 and then 
e iz16, this leads to 

. , 
x, (ce) = cg I 

lhe expression within the square brackets equals -.i/4 In 3. In order 
to check this statement it is necessary to combine the integrals, which 
appear there, into one with integration limits (in/3, i2n/3) and to sub- 
stitute u = i(1/2 I7 - Y); this permits us to reduce that integral to a 
tabulated one with the integration interval (0; n/6). In this way we 
arrive at 

lim $h (az) = dc / 6 esp (?$) (3.11) 
l-+0 
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Paying attention to (2.10) and (1.231, we find 

Assuming that X(s) is a real function (the proof of this 
given below), we derive from (2.12) 
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(3.12) 

will be 

00 

lim Jb (its; h) = Jb (its) = c-“1 - f 
l-t0 1 s 

rae-bcT dr 

o lf?U f +I x (%I 6 + 4 
-I- 

+ q e~~~~‘~~22) [sin (+$ n -I- -$) + s sin ($ n + -$)I} (3.13) 

( 
z + q3 -j- ._L) &?---bcrdr 

I^i~Jb(a,; ~)=Jb(c~)~c-7i{-~~,,,,,,+,,,,,~+,,,,,,~- 

+-;i;-exp --r/b v/s ( 2 c)[~GoS(~-t~)+~Gog(~$-~)-t 

-j- i (+-sin (2 + $) - $ sin ($- i_ p))]} = Tb (- ce) (3.14) 

In order to obtain for the quantities M(s), Q(n), p(x) expressions 
more convenient for calculation, we introduce a dimensionless abscissa 
and new arbitrary constants to replace those defined by Formulas (2.4): 

8 = cx, p = bc, B, = ic’lZAo, B, = c’fgA, (3.15) 

Further, we introduce reduced quantities M*(t), p(c), p’(t) related 
to the actual ones by means of the formulas 

M’ (8 = CM (% / c), (2’ (E) = Q (E / 4, P*(E)= $PWC) (3.16) 

Turning to Formulas (2.9) and (2.11) and passing to the limit x + 0, 
with (3.10) to (3.14) and (2.71, (3.15) and (3.16) taken into considera- 
tion, we find 

M’ (8 = 8 [$ J(O) (E) - cp (E,] -t 4 [; J(l) (E) -t cp’ (E)] - $ J, (E) - 

- & [cp’ 6) J.(O) (P) - cp” (E) J.(l) (P) - rp” (P) J.(‘) (E) “- 9”’ (P) Jqt3) (S>I - 

-~[~~iII(~-t~~)-I_~eos(~-~~)]X 

x expE--q(E, -l-B)] +MD3(E-P) (3.17) 

Q” (E) = $ , GM’ 
P’(E) = yjp- (W) 
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21/G v-1 cp (3~) = T e- =2cos(& $- +) 

J’“’ (cc) = 7 6, ( s, z)ds (r&=0,1,2,3) 
0 

while 

(3.19) 

(3.20) 

(3.21) 

denotes the reduced bending moment in the infinitely long beam subjected 

to a concentrated force at x = 0. 

This function has been tabulated in [ 6 1 : in addition, [ 12 1 gives 
its approximation by elementary functions. The same publication gives a 
procedure for transformation of slowly converging improper integrals of 
the type (3.21) into very rapidly converging ones. Unfortunately, the 
present author was not acquainted with Al’perin’s work [ 14 I, which 
presents the same method with application to the same integrals. To B.G. 
Korenev, who called attention to this, the author herewith expresses his 
gratitude. 

The arbitrary constants B,, and B,, appearing in (3.17) and (3.181, 

will be found from the conditions of the free end of the beam, i.e. from 

M*(O) = 0, Q*(O) = 0. Substituting into the left-hand sides of these 

equations the values of W(O) and Q*(O) obtained from Formulas (3.17) and 

(3.18), we arrive at the system 

1 _+ J(n) (0) - ?q cos $1 I?, + [ 4 J(l) (0) - 2 y” -coS;]B,+11@)=O 
_.. + J(I) (0) - qz- [ cos+?o-p(0)-~ 

($22) 
sin $1 B, + j2 (p) = 0 

The functions f1,2 p ( ) will be obtained from the formulas given above 

for M* (5) and Q* (5) , respectively, omitting there the terms containing 
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8, and B, and putting <= 0. We note that the determinant of the system 
(3.22) equals to unity with accuracy to the fourth decimal. 

4. We shall now give a representation of the function X(s) convenient 
for computation, and at the same time we shall simplify the integrals 
(3.20). To this end we use the substitution 

u = lnt(-+ n<Im(Inz)<+n) 

in Formulas (3.9) 
,rexp(fiW 

h,,(q = T$ 1 
rexp (b/2) 

& dt, h3(T) = + 1 l&+ (4.,1) 
1 1 

Furthermore, we may write, on the basis of Cauchy’s theorem (see 
Fig. 1) 

This leads, by virtue of (4.1), as easily seen, to 

. :exP++3) 

Y 1 h(q-1 W)= ; [ &dt 
rexp (-k/6) 

(4.2) 

q bj --, 
l x._ I 9 According to (4.1) we have (Fig. 2) 

Fig. 1. 

h,(r)=--f( \ +\)l&dt 
c,*, c, 

(4.4) 

I3y corresponding changes in the integration variables we obtain 

h,(r)=&*~&du,-;i& ds+$& (4.5) 
0 1 i 

On the other hand, paying attention to (4.4) and (see Fig. 2) to 
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we find 

ds $_ .$i I&_ + _$ 

0 1 1 

Taking the sum of (4.5) and (4.6) and carrying out obvious calcula- 
tions, we obtain 

v2 

12, (‘t) = ; tan-’ .r-Ln’+$ i ‘8 L s wiQdv + Inz 7 eiQdv 
_-x,2 1 - 9 e2{Q 

1 (ha7) 

_-n/2 1 - r2 e2fQ 

Finally, using the notations 

(4.3 

(4.9) 

and taking into account (3.8), (4.31, (4.7), as well as the relation 

we find 

(Z - i)-“s exp ($ i tan-1 z - +- in) = (1 + x2)+’ 

X (z) = I% (T2 + 1/Zr+ l)+2(22 + 1)~“exp [ + H, (z)] (4.10) 

The function H(r) can be expanded into the series 

No (z) = f $ [(-- lJk - 2sin [P + 1) Ml In z _ f ~0s I@~ “+ :I 01 _ 
2k + 1 

k=O 

_ (- Ilk - 2 sin [PC + 1) n/61 
(2k + 1)’ 1 Z2k+1 

(4.11) 

convergent for r < 1. This series is obtained by means of expansion of 
the integrand in the integrals (4.8) in terms of ascending powers of r. 
Expansion in terms of decreasing powers of r would give for H,(r) the 
series 

H,(~) = f 5 [ (- 1)” - 2 sin I(2k -t- l)_cj6] Iu z _ .J+ cos [Wk;l! a/ 61 _ 
2k + 1 

k=o 

(-- 1)’ - 2 sin IOk -t- 1) n/61 - -____ 

(2k + I)' 
T_-(2k+lj 

W>l) (4.12) 

The representation (4.11), (4.12) of the function H,(r) in the entire 
interval (0, m) shows that it is a real function, and the same is true 
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of the function X(r); it leads, furthermore, to the very important rela- 
tion 

which permits us to simplify significantly 
the computation of the integrals (3.20). 

-/ 
‘- 

L 
Let us illustrate this statement with X 

the example of the integrals J’“‘(t), 
f 

n = 0, 1, 2, 3. Taking (4.10) into considera- 
tion, we subdivide the integration interval 
into two intervals: 

Fig. 2. 

Then we substitute into the second integral r = s-‘; using (4.13) we 
find 

.I(“) (E) = ‘s F (s) [~‘+~e-~~ + 5 e--El6 ds ] (n == 0, 1, 2, 3) (4.1.4) 
0 

where 

F(s) = 1/$ + 1/s $- 1 ;m (S’ + I)-’ e-HeC8’ (4.15) 

The remaining integrals (3.20) are to be reduced in the same manner 
to analogous forms. ‘Ibe function (4.15) will again appear there in the 
integrands. Table 1 gives its values necessary for the computation of 
the integrals by means of Simpson’s rule, with different degrees of 
accuracy. The function H,(s) was computed with the aid of its representa- 
tion (4.11); for the slowly converging series appearing in the latter 
it was possible to find the sum 

2J 
co 2 sin (2k + 1) n / 6 - (-- I)" T2k+l = T 

2k + 1 
tan_, 

1 22 - mr’ _ z (z < 1) 
/i-=0 
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The summation of these series was aided by the expansion of tan-’ 
into a series, as well as by two expansions given on p. 54 of [ 12 1 . 

The simplest way of calculating all integrals (3.20) is to use 
Simpson’s rule, except the integral J”‘(O), for whose computation 
Simpson’s rule cannot be applied in its immediate form. In this case a 
sufficiently accurate approximation is provided by the function (see 
Table 11 

F (‘I = (::.‘s::,“; 7.600 s - 5.500 s? 
(0 < s < 0.6) 

(0.6<s< 1) 
(4.16) 

The formulas obtained here permit us to compute the values of M*. Q*, 

p* for a semi-infinite beam on an elastic half-plane under the action of 

a concentrated force (Table 2) or a concentrated moment (Table 3) at its 
end. These tables also give the values of M*(c). Q*(t), p*(c) correspond- 

ing to the approximate solution obtained by Gorbunov-Posadov on p. 140 

of [61. 

TABLE 1. 

Values of F(s) Values of F(s)’ 
s Act. to 

S 
Exact Act. to 

(4. 16) Exact (4.16) 
_ _~._____ 

017 i-:25 i i 1824 

1.780 

1.802 1.825 
0.75 1.804 1.806 

E75 1.758 1.627 1.760 1.639 
0.9 1.572 1.585 
I 1.297 1.300 

We note that in the case of loading applied at the end of the beam, 

Formulas (3.17) and (3.18) undergo simplification, because all terms free 

of B. and B, must be considered to be zero in this case; for the concen- 

trated moment Formulas (3.16) assume the form 

In the case of a concentrated force acting at the end of the beam, we 
have to use in (3.22) as free terms the quantities 

il (P) = 0, fa (P) = 4 
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while in the case of a concentrated moment we shall have 

fl(P)=---1~ fa (P) = 0 

TABLE 2. 
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5 

. 

I M* 

Ex 

I 

ng to [ 6 1 

L 
act Solution 

I 

Solution Accordil 

Q’ P* M' Q’ 

-1 -: -1 
-0.558 1.58 16 
-0.246 0.754 -0: 25 

-0.61 
-0.34 

-0.124 0.452 -0.30 -0.16 
-0.041 0.339 -0.32 -0.05 

0.015 0.227 -0.32 
0.052 0.141 -0.31 0.08 
0.076 0.089 -0.29 0.11 
0.089 0.046 -0.26 0.13 
0.095 0.016 -0.34 0.13 
0.096 0.006 -0.21 0.13 

-0.10 0.09 
-0.04 0.04 

0 
-0.123 Ki 

z-t 
018 
1.0 
1.2 
1.4 

-0.190 
-0.227 
-0.243 
-0.245 
-0.237 
-0.225 

1.6 -0.208 

;:: -0.189 -0.170 

.::: -0.086 -0.037 

1-60 
1.16 
0.73 
0.48 
0.31 
0.21 
0.11 
0.05 
0.01 

-0.02 
-0 .05 
---0 .03 

E 
0:4 

0.94 1.00 

0.84 

Z:s” 0.74 0.63 

:*; 
114 

0.53 0.44 
0.36 

2:o :.: 

0.29 

0.23 0.18 
3.0 0.03 
4.0 -0.01 

Exi 

-i 

TABLE 3. 

act Solution Solution According td [ 6 I 

Q’ P* 

I ,- 

i M’ I Q' P' - - 

2: 
-0:52 

q F75 
-0.20 

-0.53 0.03 
-0.51 0.15 
-0.48 0.21 
-0.43 0.25 
-0.38 0.25 
-0.33 0.24 
-0.28 0.23 
-0.24 0.21 
-0.08 0.11 
-0.01 0.04 

li-2) 
0:90 

-i-g 
-0143 

0.81 -0.49 
0.70 -0.51 
0.60 -0.49 
0.51 -0.46 
0.42 a.41 
0.35 -0.36 
0.28 -0.32 
0.22 -0.27 
0.04 -0.10 

-0.01 -0.02 

II.02 
-0.51 
-0.18 

0.02 
0.14 
0.20 
0.23 
0.24 
0.24 
0.22 
0.12 
O.i!5 
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